Skip to main content

Llama CPP

Compatibility

仅在 Node.js 上可用。

¥Only available on Node.js.

此模块基于 llama.cppnode-llama-cpp Node.js 绑定,允许你使用本地运行的 LLM。这允许你使用能够在注意本电脑环境中运行的更小的量化模型,非常适合测试和临时填充想法,而无需支付费用!

¥This module is based on the node-llama-cpp Node.js bindings for llama.cpp, allowing you to work with a locally running LLM. This allows you to work with a much smaller quantized model capable of running on a laptop environment, ideal for testing and scratch padding ideas without running up a bill!

设置

¥Setup

你需要安装 node-llama-cpp 模块的主要版本 3 才能与本地模型通信。

¥You'll need to install major version 3 of the node-llama-cpp module to communicate with your local model.

npm install -S node-llama-cpp@3
npm install @langchain/community @langchain/core

你还需要一个本地 Llama 3 模型(或 node-llama-cpp 支持的模型)。你需要将此模型的路径作为参数的一部分传递给 LlamaCpp 模块(参见示例)。

¥You will also need a local Llama 3 model (or a model supported by node-llama-cpp). You will need to pass the path to this model to the LlamaCpp module as a part of the parameters (see example).

开箱即用的 node-llama-cpp 已针对在 MacOS 平台上运行进行了调整,并支持 Apple M 系列处理器的 Metal GPU。如果你需要关闭此功能或需要 CUDA 架构支持,请参阅 node-llama-cpp 上的文档。

¥Out-of-the-box node-llama-cpp is tuned for running on a MacOS platform with support for the Metal GPU of Apple M-series of processors. If you need to turn this off or need support for the CUDA architecture then refer to the documentation at node-llama-cpp.

有关获取和准备 llama3 的建议,请参阅此模块的 LLM 版本文档。

¥For advice on getting and preparing llama3 see the documentation for the LLM version of this module.

致 LangChain.js 贡献者:如果你想运行与此模块相关的测试,则需要将本地模型的路径放入环境变量 LLAMA_PATH 中。

¥A note to LangChain.js contributors: if you want to run the tests associated with this module you will need to put the path to your local model in the environment variable LLAMA_PATH.

用法

¥Usage

基本用法

¥Basic use

我们需要提供本地 Llama3 模型的路径,并且在此模块中,embeddings 属性始终设置为 true

¥We need to provide a path to our local Llama3 model, also the embeddings property is always set to true in this module.

import { LlamaCppEmbeddings } from "@langchain/community/embeddings/llama_cpp";

const llamaPath = "/Replace/with/path/to/your/model/gguf-llama3-Q4_0.bin";

const embeddings = await LlamaCppEmbeddings.initialize({
modelPath: llamaPath,
});

const res = embeddings.embedQuery("Hello Llama!");

console.log(res);

/*
[ 15043, 365, 29880, 3304, 29991 ]
*/

API Reference:

文档嵌入

¥Document embedding

import { LlamaCppEmbeddings } from "@langchain/community/embeddings/llama_cpp";

const llamaPath = "/Replace/with/path/to/your/model/gguf-llama3-Q4_0.bin";

const documents = ["Hello World!", "Bye Bye!"];

const embeddings = await LlamaCppEmbeddings.initialize({
modelPath: llamaPath,
});

const res = await embeddings.embedDocuments(documents);

console.log(res);

/*
[ [ 15043, 2787, 29991 ], [ 2648, 29872, 2648, 29872, 29991 ] ]
*/

API Reference:

¥Related