友情链接
¥Friendli
友情链接 通过可扩展、高效的部署选项,提升 AI 应用性能并优化成本节约,专为高需求 AI 工作负载量身定制。
¥Friendli enhances AI application performance and optimizes cost savings with scalable, efficient deployment options, tailored for high-demand AI workloads.
本教程将指导你使用 LangChain 将 ChatFriendli
集成到聊天应用中。ChatFriendli
提供了一种灵活的方法来生成对话式 AI 响应,支持同步和异步调用。
¥This tutorial guides you through integrating ChatFriendli
for chat applications using LangChain. ChatFriendli
offers a flexible approach to generating conversational AI responses, supporting both synchronous and asynchronous calls.
设置
¥Setup
确保已安装 @langchain/community
。
¥Ensure the @langchain/community
is installed.
- npm
- Yarn
- pnpm
npm install @langchain/community @langchain/core
yarn add @langchain/community @langchain/core
pnpm add @langchain/community @langchain/core
登录 Friendli Suite 创建个人访问令牌,并将其设置为 FRIENDLI_TOKEN
环境。你可以将团队 ID 设置为 FRIENDLI_TEAM
环境。
¥Sign in to Friendli Suite to create a Personal Access Token, and set it as the FRIENDLI_TOKEN
environment.
You can set team id as FRIENDLI_TEAM
environment.
你可以通过选择要使用的模型来初始化 Friendli 聊天模型。默认模型是 meta-llama-3-8b-instruct
。你可以在 docs.friendli.ai 查看可用的模型。
¥You can initialize a Friendli chat model with selecting the model you want to use. The default model is meta-llama-3-8b-instruct
. You can check the available models at docs.friendli.ai.
用法
¥Usage
import { ChatFriendli } from "@langchain/community/chat_models/friendli";
const model = new ChatFriendli({
model: "meta-llama-3-8b-instruct", // Default value
friendliToken: process.env.FRIENDLI_TOKEN,
friendliTeam: process.env.FRIENDLI_TEAM,
maxTokens: 800,
temperature: 0.9,
topP: 0.9,
frequencyPenalty: 0,
stop: [],
});
const response = await model.invoke(
"Draft a cover letter for a role in software engineering."
);
console.log(response.content);
/*
Dear [Hiring Manager],
I am excited to apply for the role of Software Engineer at [Company Name]. With my passion for innovation, creativity, and problem-solving, I am confident that I would be a valuable asset to your team.
As a highly motivated and detail-oriented individual, ...
*/
const stream = await model.stream(
"Draft a cover letter for a role in software engineering."
);
for await (const chunk of stream) {
console.log(chunk.content);
}
/*
D
ear
[
H
iring
...
[
Your
Name
]
*/
API Reference:
- ChatFriendli from
@langchain/community/chat_models/friendli
相关
¥Related
聊天模型 概念指南
¥Chat model conceptual guide
聊天模型 操作指南
¥Chat model how-to guides