ChatPerplexity
本指南将帮助你开始使用 Perplexity 聊天模型。有关 ChatPerplexity
所有功能和配置的详细文档,请参阅 API 参考。
¥This guide will help you getting started with Perplexity chat
models. For detailed documentation
of all ChatPerplexity
features and configurations head to the API
reference.
概述
¥Overview
集成详情
¥Integration details
Class | Package | Local | Serializable | PY support | Package downloads | Package latest |
---|---|---|---|---|---|---|
ChatPerplexity |
@langchain/community |
❌ | beta | ✅ | ![]() |
![]() |
模型特性
¥Model features
有关如何使用特定功能的指南,请参阅下方表格标题中的链接。
¥See the links in the table headers below for guides on how to use specific features.
Tool calling | Structured output | JSON mode | Image input | Audio input | Video input | Token-level streaming | Token usage | Logprobs |
---|---|---|---|---|---|---|---|---|
❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ✅ | ❌ |
请注意,在撰写本文时,Perplexity 仅在某些使用层级上支持结构化输出。
¥Note that at the time of writing, Perplexity only supports structured outputs on certain usage tiers.
设置
¥Setup
要访问 Perplexity 模型,你需要创建一个 Perplexity 账户、获取 API 密钥并安装 @langchain/community
集成包。
¥To access Perplexity models you’ll need to create a Perplexity account,
get an API key, and install the @langchain/community
integration
package.
凭证
¥Credentials
前往 https://perplexity.ai 注册 Perplexity 并生成 API 密钥。完成此操作后,请设置 PERPLEXITY_API_KEY
环境变量:
¥Head to https://perplexity.ai to sign up for Perplexity and generate an
API key. Once you’ve done this set the PERPLEXITY_API_KEY
environment
variable:
export PERPLEXITY_API_KEY="your-api-key"
如果你想自动追踪模型调用,也可以通过取消注释以下内容来设置你的 LangSmith API 密钥:
¥If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# export LANGSMITH_TRACING="true"
# export LANGSMITH_API_KEY="your-api-key"
安装
¥Installation
LangChain Perplexity 集成位于 @langchain/community
包中:
¥The LangChain Perplexity integration lives in the @langchain/community
package:
- npm
- yarn
- pnpm
npm i @langchain/community @langchain/core
yarn add @langchain/community @langchain/core
pnpm add @langchain/community @langchain/core
实例化
¥Instantiation
现在我们可以实例化我们的模型对象并生成聊天补全:
¥Now we can instantiate our model object and generate chat completions:
import { ChatPerplexity } from "@langchain/community/chat_models/perplexity";
const llm = new ChatPerplexity({
model: "sonar",
temperature: 0,
maxTokens: undefined,
timeout: undefined,
maxRetries: 2,
// other params...
});
调用
¥Invocation
const aiMsg = await llm.invoke([
{
role: "system",
content:
"You are a helpful assistant that translates English to French. Translate the user sentence.",
},
{
role: "user",
content: "I love programming.",
},
]);
aiMsg;
AIMessage {
"id": "run-71853938-aa30-4861-9019-f12323c09f9a",
"content": "J'adore la programmation.",
"additional_kwargs": {
"citations": [
"https://careersatagoda.com/blog/why-we-love-programming/",
"https://henrikwarne.com/2012/06/02/why-i-love-coding/",
"https://forum.freecodecamp.org/t/i-love-programming-but/497502",
"https://ilovecoding.org",
"https://thecodinglove.com"
]
},
"response_metadata": {
"tokenUsage": {
"promptTokens": 20,
"completionTokens": 9,
"totalTokens": 29
}
},
"tool_calls": [],
"invalid_tool_calls": []
}
console.log(aiMsg.content);
J'adore la programmation.
链接
¥Chaining
我们可以使用如下提示模板对我们的模型进行 chain 操作:
¥We can chain our model with a prompt template like so:
import { ChatPromptTemplate } from "@langchain/core/prompts";
const prompt = ChatPromptTemplate.fromMessages([
[
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
],
["human", "{input}"],
]);
const chain = prompt.pipe(llm);
await chain.invoke({
input_language: "English",
output_language: "German",
input: "I love programming.",
});
AIMessage {
"id": "run-a44dc452-4a71-423d-a4ee-50a2d7c90abd",
"content": "**English to German Translation:**\n\n\"I love programming\" translates to **\"Ich liebe das Programmieren.\"**\n\nIf you'd like to express your passion for programming in more detail, here are some additional translations:\n\n- **\"Programming is incredibly rewarding and fulfilling.\"** translates to **\"Das Programmieren ist unglaublich lohnend und erfüllend.\"**\n- **\"I enjoy solving problems through coding.\"** translates to **\"Ich genieße es, Probleme durch Codieren zu lösen.\"**\n- **\"I find the process of creating something from nothing very satisfying.\"** translates to **\"Ich finde den Prozess, etwas aus dem Nichts zu schaffen, sehr befriedigend.\"**",
"additional_kwargs": {
"citations": [
"https://careersatagoda.com/blog/why-we-love-programming/",
"https://henrikwarne.com/2012/06/02/why-i-love-coding/",
"https://dev.to/dvddpl/coding-is-boring-why-do-you-love-coding-cl0",
"https://forum.freecodecamp.org/t/i-love-programming-but/497502",
"https://ilovecoding.org"
]
},
"response_metadata": {
"tokenUsage": {
"promptTokens": 15,
"completionTokens": 149,
"totalTokens": 164
}
},
"tool_calls": [],
"invalid_tool_calls": []
}
API 参考
¥API reference
有关 ChatPerplexity 所有功能和配置的详细文档,请参阅 API 参考:https://api.js.langchain.com/classes/_langchain_community.chat_models_perplexity.ChatPerplexity.html
¥For detailed documentation of all ChatPerplexity features and configurations head to the API reference: https://api.js.langchain.com/classes/_langchain_community.chat_models_perplexity.ChatPerplexity.html