PlanetScale 聊天内存
¥PlanetScale Chat Memory
由于 PlanetScale 通过 REST API 工作,因此你可以将其用于 Vercel Edge、Cloudflare Workers 和其他无服务器环境。
¥Because PlanetScale works via a REST API, you can use this with Vercel Edge, Cloudflare Workers and other Serverless environments.
为了在聊天会话中实现更长期的持久化,你可以将支持聊天内存类(如 BufferMemory)的默认内存 chatHistory 替换为 PlanetScale 数据库 实例。
¥For longer-term persistence across chat sessions, you can swap out the default in-memory chatHistory that backs chat memory classes like BufferMemory for an PlanetScale Database instance.
设置
¥Setup
你需要在你的项目中安装 @planetscale/database:
¥You will need to install @planetscale/database in your project:
- npm
- Yarn
- pnpm
npm install @langchain/openai @planetscale/database @langchain/community @langchain/core
yarn add @langchain/openai @planetscale/database @langchain/community @langchain/core
pnpm add @langchain/openai @planetscale/database @langchain/community @langchain/core
你还需要一个 PlanetScale 账户和一个用于连接的数据库。请参阅 PlanetScale 文档 上的说明,了解如何创建 HTTP 客户端。
¥You will also need an PlanetScale Account and a database to connect to. See instructions on PlanetScale Docs on how to create a HTTP client.
用法
¥Usage
存储在 PlanetScale 数据库中的每个聊天历史记录会话都必须具有唯一的 ID。config 参数直接传递给 @planetscale/database 的 new Client() 构造函数,并接受所有相同的参数。
¥Each chat history session stored in PlanetScale database must have a unique id.
The config parameter is passed directly into the new Client() constructor of @planetscale/database, and takes all the same arguments.
import { BufferMemory } from "langchain/memory";
import { PlanetScaleChatMessageHistory } from "@langchain/community/stores/message/planetscale";
import { ChatOpenAI } from "@langchain/openai";
import { ConversationChain } from "langchain/chains";
const memory = new BufferMemory({
chatHistory: new PlanetScaleChatMessageHistory({
tableName: "stored_message",
sessionId: "lc-example",
config: {
url: "ADD_YOURS_HERE", // Override with your own database instance's URL
},
}),
});
const model = new ChatOpenAI();
const chain = new ConversationChain({ llm: model, memory });
const res1 = await chain.invoke({ input: "Hi! I'm Jim." });
console.log({ res1 });
/*
{
res1: {
text: "Hello Jim! It's nice to meet you. My name is AI. How may I assist you today?"
}
}
*/
const res2 = await chain.invoke({ input: "What did I just say my name was?" });
console.log({ res2 });
/*
{
res1: {
text: "You said your name was Jim."
}
}
*/
API Reference:
- BufferMemory from
langchain/memory - PlanetScaleChatMessageHistory from
@langchain/community/stores/message/planetscale - ChatOpenAI from
@langchain/openai - ConversationChain from
langchain/chains
高级用法
¥Advanced Usage
你还可以直接传入之前创建的 @planetscale/database 客户端实例:
¥You can also directly pass in a previously created @planetscale/database client instance:
import { BufferMemory } from "langchain/memory";
import { PlanetScaleChatMessageHistory } from "@langchain/community/stores/message/planetscale";
import { ChatOpenAI } from "@langchain/openai";
import { ConversationChain } from "langchain/chains";
import { Client } from "@planetscale/database";
// Create your own Planetscale database client
const client = new Client({
url: "ADD_YOURS_HERE", // Override with your own database instance's URL
});
const memory = new BufferMemory({
chatHistory: new PlanetScaleChatMessageHistory({
tableName: "stored_message",
sessionId: "lc-example",
client, // You can reuse your existing database client
}),
});
const model = new ChatOpenAI();
const chain = new ConversationChain({ llm: model, memory });
const res1 = await chain.invoke({ input: "Hi! I'm Jim." });
console.log({ res1 });
/*
{
res1: {
text: "Hello Jim! It's nice to meet you. My name is AI. How may I assist you today?"
}
}
*/
const res2 = await chain.invoke({ input: "What did I just say my name was?" });
console.log({ res2 });
/*
{
res1: {
text: "You said your name was Jim."
}
}
*/
API Reference:
- BufferMemory from
langchain/memory - PlanetScaleChatMessageHistory from
@langchain/community/stores/message/planetscale - ChatOpenAI from
@langchain/openai - ConversationChain from
langchain/chains